
The Retro Language
Charles Childers

Published: 2008
Tag(s): Reference Manual Handbook

1

Part 1
Introduction

2

Chapter 1
Welcome to Retro!

Retro is a small implementation of the Forth language running on a
portable virtual machine. It is minimalist in nature, yet has a well bal-
anced set of core functionality.

While this implementation is new, there is a lot of history behind the
Retro name. It was originally developed in 1998 as a 16-bit bootable
Forth, evolved into a 32-bit protected mode Forth that served as
a prototype testbed for the Tunes project, and eventually picked up some
ideas from colorForth before being rewritten to run on tradition-
al operating systems. Along the way it influenced the development of
many other Forth systems.

3

Chapter 2
Setting Up

There are two ways to get started with Retro. For most people, the
easiest option is to download the binary package, which includes execut-
ables for most common operating systems.

For those who want or need to build things themselves, follow
the appropriate set of instructions and you shouldn't have any problems.

No matter what option you choose, it's recommended that you copy
the retro or retro.exe binary to a new working directory before you start
using it. This tends to simplify things in the long run, at least for the
author.

1. Building Retro (Linux, BSD, Mac OS X, BeOS)

If you're running a Unix-like OS, building is pretty easy. Make sure
you have the prerequisites listed below, then run the following
command:

make vm
Prerequisites:

• GCC
• Make
• ncurses library

After running make, you should have several new files in your bin dir-
ectory. All you need to get started is the file named retro.

2. Building Retro (Windows)

It's a little more difficult on a Windows system. The following steps
work for building the retro.exe executable.

4

• Install Dev C++ (http://prdownloads.sourceforge.net/dev-cpp/
devcpp-4.9.9.2 setup.exe)

• Install the Curses Devpack (http://devpaks.org/de-
tails.php?devpak=5)

• Create an empty project and add the following files from retro-dev-
kit to it:
functions.h
disassemble.c
endian.c
loader.c
ngaro.c
devices.c
initial image.c

• vm.c
vm.h

• Go to Project -> Options and add the following to the Linker
commands:
-lcurses

• Compile everything

5

Chapter 3
Using Retro

1. Starting Retro

To start Retro, run the retro executable.
Retro has some differences from traditional Forths. The first is that in-

put is processed as it is typed, with space being the only recognized
whitespace character. So to get started, let's try getting a list of words
provided by Retro. Type words and hit space. You should see a list of
word names. These are covered in Part 2.

Tip: If you mess up, type some random characters and hit the space bar. Retro
will report a word-not-found condition, and continue to handle input without
problems.

Tip: All word names in the standard Retro image are lowercase. Word names
are case sensitive.

2. Saving Your Image

Since Retro is divided into a virtual machine and an image file, it is
possible to save your current image. The save process does not preserve
the stack or internal registers, but all code and data that is stored in
memory will be present when you next start Retro. To save the image,
just type save and hit space.

When you do this a new file will be created in the current working dir-
ectory. This is the retroImage file. Retro looks for this file and uses it as
the image if it exists. If it's not found, a minimal image is built into the
Retro system.

3. Leaving Retro

To exit Retro, enter bye and hit space.
Certain errors (such as division by zero) will also cause Retro to exit.

6

4. Loading Words from Files

Retro allows loading code from files using a command line parameter.
./retro —with filename

You can specify several files, but each one needs to be preceded by
—with.

Tip: If you specify multiple files, the last one you specify will be the first one
processed by Retro.

7

Part 2
The Language

8

Chapter 1
The Words

1. Reading the List

The documentation for the words is pretty sparse, but basic details are
provided for each one. Each word takes on the following format:

• wordname
data stack effect
address stack effect
Description of the word

Stack effects are given in a form like this: before — after

2. Words in the Core

The following words are provided by the standard retroImage.
• here

— a
—
Return the address of the top of the heap

• ,
n —
—
Write a cell to the top of the heap; increase heap pointer.

•]
—
—
Turn compiler on

• create
"name" —

9

—
Create a new dictionary entry with a class of data.

• :
"name" —
—
Create a new dictionary entry with a class of word and call].

• macro:
"name" —
—
Create a new dictionary entry with a class of macro and call].

• cr
—
—
Move the text cursor to the start of the next line

• emit
n —
—
Display a character

• type
ptr —
—
Display a string

• words
—
—
Display a list of all named words

• save
—
—
Save the image

• clear
—
—
Clear the display

• key
— n
—
Read a value from the keyboard

• accept
delim —

10

—
Read a string delimited by delim into the tib.

• dup
n — n n
—
Duplicates TOS

• 1+
x —y
—
Increment TOS

• 1-
x — y
—
Decrement TOS

• swap
x y — y x
—
Exchange TOS and NOS

• drop
x y — x
—
Drop TOS

• and
x y — z
—
Bitwise AND

• or
x y — z
—
Bitwise OR

• xor
x y — z
—
Bitwise XOR

• @
a — n
—
Fetch a value from address

• !
n a —

11

—
Store a value to address

• +
x y — z
—
Add two numbers

• -
x y — z
—
Subtract two numbers

• *
x y — z
—
Multiply two numbers

• /mod
x y — z q
—
Divide and get remainder

• <<
x y — z
—
Bitwise left shift

• >>
x y — z
—
Bitwise right shift

• nip
x y — y
—
Drop NOS

• over
x y — x y x
—
Put a copy of NOS on top of the stack

• 2drop
x y —
—
Drop TOS and NOS

• not
x — y

12

—
Same as -1 xor.

• rot
x y z — y z x
—
Rotate top three items on the stack

• -rot
x y z — z x y
—
Rotate top three items on stack twice

• tuck
x y — y x y
—
Put a copy of TOS under NOS

• 2dup
x y — x y x y
—
Duplicate both TOS and NOS

• on
a —
—
Set an address to -1

• off
a —
—
Set an address to 0

• /
x y — z
—
Divide two numbers

• mod
x y — z
—
Divide and get remainder only

• neg
x — y
—
Invert the sign of a number

• execute
a —

13

— a
Call a function at address

• .
n —
—
Display a number

• "
"string" — a
—
Parse for a string

• compare
1 2 — f
—
Compare two strings

• in
p — n
—
Read a value from a port

• out
n p —
—
Write a value to a port

• wait
—
—
Wait for a hardware event

• '
"name" — a
—
Get the address of a named word

• @+
a — a+1 n
—
Fetch a value from address a, return the value n and increment the
address

• !+
n a — a+1
—
Store n into address a, increment the address

14

• +!
n a —
—
Add n to the value at address a, storing the results in a.

• -!
n a —
—
Subtract n from the value at address a, storing the results in a.

• :is
a xt —
—
Assign vector at xt to address a

• :devector
xt —
—
Remove the vector from xt

• is
a "name" —
—
Set vector name to address a.

• devector
"name" —
—
Restore a vector to its default state.

• compile
a —
—
Compile a call to address

• literal,
n —
—
Compile a value as a literal

• redraw
—
—
Update the display

• getLength
ptr — n
—
Get the length of a string

15

• tempString
1 — 2
—
Mark a string as temporary

• keepString
1 — 2
—
Mark a string as permanent

• bye
—
—
Shutdown Ngaro VM, exit Retro

• (remap-keys)
n — n
—
Vector which allows replacing one key value with another.

• .word
a —
—
Class handler for normal words. (Class id = 1)

• .macro
a —
—
Class handler for macros. (Class id = 2)

• .data
a — a
—
Class handler for data structures. (Class id = 3)

• .inline
a —
—
Class handler for inline words (Class id = 4)

• with-class
a n —
—
Class dispatcher. N is the class id.

• boot
—
—
Hook for custom startup code for turnkey applications.

16

• depth
— n
—
Return the current depth of the data stack

• reset
... —
—
Remove all items on the data stack

• notfound
—
—
Handler called when a word is not found

• s"
"string" — a
—
Compile a string into a definition

• [
—
—
Turn the compiler off

• ;
—
—
End a definition

• ;;
—
—
Compile an exit point into a definition

• =if
x y —
—
Compare two number for equality. Jump to then if condition not
met.

• >if
x y —
—
Compare two number for greater than. Jump to then if condition
not met.

• d->class
d — a

17

—
Dictionary: Get class slot

• d->xt
d — a
—
Dictionary: Get XT slot

• d->name
d — a
—
Dictionary: Get name slot

• tx
— a
—
Text X coordinate (graphics mode)

• ty
— a
—
Text Y coordinate (graphics mode)

• last
— a
—
Pointer to the most recent dictionary entry

• compiler
— a
—
Holds compiler state

• tib
— a
—
Pointer to the text input buffer

• update
— a
—
Variable telling Retro to force a screen update.

• fb
— a
— Address of framebuffer

• fw
— a

18

—
Width of framebuffer

• fh
— a
—
Height of framebuffer

• #mem
— a
— Amount of memory

• which
— a
— Address of most recently found dictionary entry

19

Part 3
Implementation

20

Chapter 1
The Virtual Machine

1. Overview

Retro runs on a virtual machine called Ngaro. This allows it to support
any system capable of running an implementation of the Ngaro. At
present, there are implementations in C, JavaScript, and Java. Retro has
been tested and confirmed to work on Linux, Mac OS X, Windows, and
BeOS, and on x86 and Alpha hardware. In addition, it can be run in most
modern web browsers including Internet Explorer 7, FireFox, Safari, and
Opera.

Ngaro emulates a MISC/NOSC architecture. This allows a small set of
instructions with trivial encodings, simplifying the Forth implementa-
tion and development tools.

Along with a simple processor, Ngaro also emulates a variety of basic
hardware devices. Most implementations provide either a text console
or graphical framebuffer for output, and a keyboard for input. Most also
allow for saving the memory contents to disk. Other devices may be
emulated, but are considered non-standard at this time.

2. Image Files

The VM works with image files, which are binary snapshots of the
emulated memory. This allows for some nice things, including saving
the current memory image, and reloading it later.

The current implementation of the image file does not save any of the
internal registers or stack contents, so each time an image is loaded, the
image contents need to be able to start fresh.

Image files are used with all implementations of the VM, but saving
images does not work in the JavaScript implementation. If a separate im-
age file can not be found at startup, the Retro system uses a built in min-
imal image.

21

3. I/O Devices

Ngaro allows communication with the emulated devices through
a system of I/O ports.

Port 0 - Wait for Hardware Event
This is used to determine if Ngaro should enter a wait for hardware

event loop. It should be set to 0, then use the wait instruction. In Retro,
this is all done by the wait word.

Port 1 - Read from the Keyboard
To read a value from the keyboard, set port 0, wait, then read the key

value from port 1.
Port 2 - Character Generator
Ngaro provides a hardware character generator. This takes data off the

stack, so you should make sure the proper values are on the stack before
using it. For text consoles, you need to leave the character code on the
stack. For framebuffer use, leave the x, y coords and the character code
on the stack.

Displaying a negative character will clear the screen.
Port 3 - Force Video Update
Ngaro implementations may cache output and only update the dis-

play periodically. If they do, then they should respond to this by imme-
diately updating the display. You do not need to wait after setting
this port.

Port 4 - Save Image
If your Ngaro implementation allows saving images, you can use this

port to do so. To save, set port 4 to 1 and wait.
Port 5 - Hardware Capability Detection
To use this port, pass it a value from the list below, wait, then read

back from it to obtain the results of your query. The following queries
are currently supported on the stable Ngaro implementations:

-1 Amount of memory being provided
-2 Address of framebuffer (0 if none)
-3 Width of framebuffer
-4 Height of framebuffer
-5 Depth of data stack
-6 Depth of address (return) stack

22

4. Instruction Set

The MISC processor has 31 instructions. These are listed below, using
the following format.

Tip: All opcodes are listed in decimal.

• Opcode # / Name
Data Stack
Address Stack
Description

• 0 NOP
—
—
Does nothing. Mostly used for padding.

• 1 |value| LIT
— n
—
Push a literal to the stack

• 2 DUP
n — n n
—
Duplicate the top value on the stack

• 3 DROP
n —
—
Drop the top value off the stack

• 4 SWAP
x y — y x
—
Exchange the top and second item on the stack

• 5 PUSH
n —
— n
Push the top item on the data stack to the address stack

23

• 6 POP
— n
n —
Pop the top item on the address stack to the data stack

• 7 |address| CALL
—
— a
Call a subroutine

• 8 |address| JUMP
—
—
Branch unconditionally to a memory location

• 9
—
a —
Return from a subroutine

• 10 |address| >JUMP
—
—
Conditional branch, if NOS is greater than TOS

• 11 |address| <JUMP
—
—
Conditional branch, if NOS is less than TOS

• 12 |address| !JUMP
—
—
Conditional branch, if NOS is not equal to TOS

• 13 |address| =JUMP
—
—
Conditional branch, if NOS is equal to TOS

• 14 @
a — n
—
Fetch the value at the memory address in TOS

• 15 !
n a —
—
Store the value on the second stack location to the address in TOS

24

• 16 +
x y — z
—
Add the top two values on the stack

• 17 -
x y — z
—
Subtract the top two values on the stack

• 18 *
x y — z
—
Multiply the top two values on the stack

• 19 /MOD
x y — z q
—
Divide and get the remainder of the top two values on the stack

• 20 AND
x y — z
—
Bitwise AND operation

• 21 OR
x y — z
—
Bitwise OR operation

• 22 XOR
x y — z
—
Bitwise XOR operation

• 23 <<
x y — z
—
Shift bits left

• 24 >>
x y — z
—
Shift bits right

• 25 0;
n — n OR — n
—

25

Exit a subroutine and drop TOS if TOS is 0. If TOS is not 0, do
nothing.

• 26 1+
x — y
—
Increase the value on the stack by 1

• 27 1-
x — y
—
Decrease the value on the stack by 1

• 28 IN
p — n
—
Read a value from a port

• 29 OUT
n p —
—
Send a value to a port

• 30 WAIT
—
—
Wait for the hardware to process an event

26

Chapter 2
The Internals

1. The Interpreter

Retro has a simple interpreter. The interpreter calls accept, passing it
the ascii value 32 (for space) as a delimiter. Input is accepted and added to
the tib until the delimiter is encountered. At this point, the interpreter
cycles through the dictionary, comparing the input in tib to the name of
each entry. This loop goes from the newest to the oldest entry, and exits
when a match is found. If a match was found, the xt of the word is
pushed to the stack and the class handler attached to its dictionary entry
is called. This handler is responsible for handling the xt and carrying out
the proper behavior for the word.

If a match is not found, the interpreter tries to convert the token to an
integer. If successful, the integer value is pushed to the stack and the
.data class handler is called.

If a conversion to integer failed, and no match was found, the inter-
preter calls notfound to report the error.

This process is then repeated until Retro is shut down.
Tip: Retro has no separate compiler loop. Instead, each class handler is re-

sponsible for compiling the code for words associated with it. This allows a very
straightforward interpreter loop.

2. Word Classes

Retro’s interpreter makes use of an implementation technique known
as word classes. This approach was created by Helmar Wodtke and allows
for a very clean interpreter and compiler. It makes use of special words,
called class handlers, to process execution tokens. Each word in the dic-
tionary has a class handler associated with it. When being executed, the
address of the word is pushed to the stack and the class handler is

27

invoked. The handler then does something with the address based
on various bits of state.

The standard Retro language has four classes defined.

• .forth
a —
—
If interpreting, call the word. If compiling, compile a call to the
word.

• .macro
a —
—
Always call the word. This is normally used for words that lay
down custom code at compile time, or which need to have differ-
ent behaviors during compilation.

• .inline
a —
—
If interpreting, call the word. If compiling, copy the first opcode of
the word into the target definition. This is only useful for use with
words that map directly to processor opcodes.

• .data
a — a
—
If interpreting, leave the address on the stack. If compiling, com-
pile the address into the target definition as a literal.

It is possible to define custom classes. The easiest way to show how to
add a new class is with an example. For this, we'll create a class for
strings with the following behavior:

• If interpreting, display the string
• If compiling, lay down the code needed to display the string

28

Retro has a convention of using a . as the first character of a class
name. In continuing this tradition, we'll call our new class .string

Tip: On entry to a class, the address of the word or data structure is on the
stack. The compiler state (which most classes will need to check) is in a variable
named compiler.

A first step is to lay down a simple skeleton. Since we need to lay
down custom code at compile time, the class handler will have two
parts.

: .string (a —) compiler @ 0 =if (interpret time) ; then (compile
time)

We'll start with the interpret time action. We can replace this with
type, since the whole point of this class is to display a string object.

: .string (a —) compiler @ 0 =if type ; then (compile time)
The compile time action is more complex. We need to lay down the

machine code to leave the address of the string on the stack when the
word is run, and then compile a call to type. If you look at the instruction
set listing, you'll see that opcode 1 is the instruction for putting values on
the stack. This opcode takes a value from the following memory location
and puts it on the stack. So the first part of the compile time action is:

: .string (a —) compiler @ 0 =if type ; then 1 , , ;
Tip: Use , to place values directly into memory. This is the cornerstone of the

entire compiler.
One more thing remains. We still have to compile a call to type. We

can do this by passing the address of type to compile.
: .string (a —) compiler @ 0 =if type ; then 1 , , ['] type compile

And now we have a new class handler. The second part is to make this
useful. We'll make a creator word called displayString: to take a string
and make it into a new word using our .string class. This will take a
string from the stack, make it permanent, and give it a name.

Tip: New dictionary entries are made using create. The class can be set after
creation by accessing the proper fields in the dictionary header. Words starting
with d-> are used to access fields in the dictionary headers.

: displayString: ("name" —) create ['] .string last @ d-
>class ! keepString last @ d->xt !

This uses create to make a new word, then sets the class to .string and
the xt of the word to the string. It also makes the string permanent us-
ing keepString. last is a variable pointing to the most recently created

29

dictionary entry. The two words d->class and d->xt are as dictionary
field accessors and are used to provide portable access to fields in the
dictionary.

We can now test the new class:
" hello, world!" displayString: hello
hello
: foo hello cr foo

You can use this approach to define as many classes as you want.

3. Threading Model

Retro uses subroutine threading with inline machine code for some
words. This was chosen primarily due to its simplicity, but also for his-
torical reasons. (All Retro implementations since 2001 have
been primarily subroutine threaded).

The subroutine threading model compiles code to native machine
code, primarily as a series of calls to other routines.

As an example:
: foo 1 2 + .

This will compile to:
lit 1
lit 2
call +
call .
;

The subroutine threading model allows a lot of opportunity for optim-
ization. Recent releases of Retro support inline machine code generation
for primitives, so the above example can now compile to:

lit 1
lit 2
+
call .
;

This saves a call/return operation, allowing a small, but measurable
gain in performance. The compiled code is also smaller overall.

30

4. Vectors

Vectors are another important concept in Retro.
Most Forth systems provide a way to define a word which can have its

meaning altered later. Retro goes a step further by allowing all words
defined using : or macro: to be redefined. Words which can be redefined
are called vectors.

Vectors can be replaced by using is, or returned to their original defin-
ition with devector. For instance:

: foo 23 .
foo
: bar 99 . ' bar is foo
foo
devector foo
foo

There are also variations of is and devector which take the addresses
of the words rather than parsing for the word name. These are :is and
:devector.

Becoming familiar with manipulating vectors will allow you a much
greater degree of control over the Retro system.

31

www.feedbooks.com
Food for the mind

32

	Part 1 - Introduction
	1. Welcome to Retro!
	2. Setting Up
	1. Building Retro (Linux, BSD, Mac OS X, BeOS)
	2. Building Retro (Windows)

	3. Using Retro
	1. Starting Retro
	2. Saving Your Image
	3. Leaving Retro
	4. Loading Words from Files

	Part 2 - The Language
	1. The Words
	1. Reading the List
	2. Words in the Core

	Part 3 - Implementation
	1. The Virtual Machine
	1. Overview
	2. Image Files
	3. I/O Devices
	4. Instruction Set

	2. The Internals
	1. The Interpreter
	2. Word Classes
	3. Threading Model
	4. Vectors

